Speech Intelligibility Enhancement using Microphone Array via Intra-Vehicular Beamforming

Senior Project Proposal Presentation

Devin McDonald, Joseph Mesnard Advisors: Dr. Yufeng Lu, Dr. In Soo Ahn

November 30th, 2017

Agenda

- Problem Background
- Project Objectives
- ✤ Beamforming
- System Description
- Efforts and Preliminary Results

Problem Background

According to the National Safety Council, there are approximately

1.6 million

crashes **each year** due to distracted driving involving mobile phones ^[1].

Figure 1 - Man talking on phone while driving

Problem Background

Figure 2 - Difficult to understand speech

Project Objectives

To reduce the risk of hands-on mobile phones usage in cars

- Increase speech intelligibility for far-end user
 - Uniform Linear Array (ULA) of microphones
 - Beamforming
 - Principle to Interference Signal Ratio

Array of Microphones and Signal Processing

Figure 3 - Easier to understand speech

Beamforming

- Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception.
- Delay-and-Sum Beamforming
 - Straightforward structure (see next few slides)
 - Simple implementation with less computation
- Minimum Variance Distortionless Response (MVDR) Beamforming
 - Adaptive approach for optimization
 - Heavy computation for implementation

Delay and Sum Beamforming

 $y[n] = \frac{1}{N} \sum_{k=0}^{N-1} x_k[n]$

Figure 4 - Delay and Sum Beamforming at 0° explained ^[5]

Delay and Sum Beamforming

 $y[n] = \frac{1}{N} \sum_{k=0}^{N-1} x_k[n]$

Figure 5 - Delay and Sum Beamforming at 45° explained ^[5]

Delay and Sum Beamforming

Figure 6 - Delay and Sum Beamforming with delays^[5]

System Block Diagram

Figure 7 - System block diagram

System Description

N-Element Microphone Array ULA of microphones will output signal via XLR.

Filters

A-Weighting Filters implemented in MATLAB/Simulink are designed to focus on the prominent frequencies of human speech (~500Hz to ~4kHz).

Delay

Delays will work as a part of the "Delay" and Sum beamforming algorithm

User input

The end user will be able to switch beam patterns to control where the beam is steered and who in the vehicle can be heard.

Audio Interface

The Focusrite Scarlett 18i20 will send digitized audio data from the microphones to the computer via USB.

Audio System Toolbox

The audio system toolbox in Simulink will be used to communicate with the audio interface and get stream data into Simulink.

Requirements

Functional

- □ The system is tested and demonstrated in intravehicular or similar environment.
- □ The system includes a ULA microphone array.
- □ Each microphone is routed to a system (such as MATLAB) for data acquisition.
- □ Beamforming is implemented in real-time.

Non-Functional

- □ The system will increase the intelligibility of near-end speech sent to the far-end user.
- □ The system requires little user manipulation or calibration.
- □ The system can be integrated within a vehicle.

Parts List

Quantity	Description	Price	Ext. Price
1	XLR Patch Cables	\$31.75	\$31.75
3	Behringer UltraVoice XM1800S Microphones	\$39.99	\$119.97
5	Pro Black Adjustable Dual Plastic 2pcs Drum Microphone Clip	\$7.44	\$37.20
1	Scarlett 18i20	\$499.99	\$499.99

Engineering Efforts

BRADLEY

University

圆

Figure 8 - Engineering efforts timeline

First Test Setup

Figure 10 - First test setup picture

Linear Translation Test

BRADLEY University

B

Figure 11 - Linear translation diagram

Figure 12 - Theoretical 1kHz beamforming results

Experimental Results

Figure 13 - Experimental 1kHz beamforming results

Experimental Results

Figure 14 - Normalized array power from 1 kHz beamforming results

Spectral Sweep Test

BRADLEY University

B

Figure 15 - Spectral sweep diagram

Issues

- Used laptop speaker
- Walked and held laptop for linear translation test
- Environmental interference

Suggestion Add Microphones

- 7 Microphones
- 0.2 Meters
- -20 dB

BRADLEY University

Figure 16 - The advantage of increased microphones

BRADLEY University

Figure 16 - The advantage of increased microphones

References

[1] "Texting and Driving Accident Statistics - Distracted Driving." *Edgarsnyder.com*. Accessed October 5, 2017. Available: <u>https://www.edgarsnyder.com/car-accident/cause-of-accident/cell-phone/cell-phone-statistics.html</u>

[2] "Phased Array System Toolbox - mvdrweights." (R2017b). *MathWorks.com*. Accessed July 14, 2017. Available: <u>https://www.mathworks.com/help/phased/ref/mvdrweights.html</u>

[3] "(Ultra) Cheap Microphone Array." *Maxime Ayotte*. Accessed November 28, 2017. Available: http://maximeayotte.wixsite.com/mypage/single-post/2015/06/25/Ultra-Cheap-microphone-array

[4] "Microphone Array Beamforming." *InvenSense*. Accessed November 28, 2017. Available: <u>https://www.invensense.com/wp-content/uploads/2015/02/Microphone-Array-Beamforming.pdf</u>

[5] "Delay Sum Beamforming." *The Lab Book Pages*. Accessed November 28, 2017. Available: <u>http://www.labbookpages.co.uk/audio/beamforming/delaySum.html</u>

Speech Intelligibility Enhancement using Microphone Array via Intra-Vehicular Beamforming

Devin McDonald, Joe Mesnard Advisors: Dr. In Soo Ahn, Dr. Yufeng Lu

November 30th, 2017

Appendix

Second Test Setup

Matlab GUI for Beamforming

BRADLEY University

BRADLEY University

A-weighting (blue), B (yellow), C (red), and D-weighting (blk)

BRADLEY University A-Weighting graph from https://en.wikipedia.org/wiki/A-weighting

Parts List With URLs

Quantity	Description	Price	Ext. Price
1	XLR Patch Cables https://www.amazon.com/Pack-Female-Microphone-Extension- Cable/dp/B01M0JQX2E/ref=sr_1_3?ie=UTF8&qid=1510258105&sr=8- 3&keywords=3ft+xlr+pack&dpID=61YjshJDuwL&preST=_SY300_QL70_&dpSrc=srch	\$31.75	\$31.75
3	Behringer UltraVoice XM1800S Microphones https://www.amazon.com/Behringer-XM1800S-BEHRINGER- ULTRAVOICE/dp/B000NJ2TIE/ref=sr_1_4?ie=UTF8&qid=1510257881&sr=8- 4&keywords=behringer+dynamic+microphone	\$39.99	\$119.97
5	Pro Black Adjustable Dual Plastic 2pcs Drum Microphone Clip https://www.amazon.com/Professional-Adjustable-Plastic-Microphone- Karaoke/dp/B06ZZCMJ26/ref=sr_1_87?s=musical-instruments&ie=UTF8&qid=1510262769&sr=1- 87&keywords=mic+clamp	\$7.44	\$37.20
1	Scarlett 18i20 http://www.musiciansfriend.com/pro-audio/focusrite-scarlett-18i20-2nd-gen-usb-audio- interface/j3522200000000?cntry=us&source=3WWRWXGP&gclid=EAIaIQobChMliu7F8a291wIV0LjA Ch36FQCZEAQYASABEgI3D_BwE&kwid=productads-adid^221957295827-device^c- plaid^323968843383-sku^J3522200000000@ADL4MF-adType^PLA	\$499.99	\$499.99

Fractional Delay

Fs = 44.1 kHz

f = 1 kHZ

Sampled sinc pulse

Helpful Scales

Minimum Sample Delay at 44.1 kHz is 22.676 us

Time delay from a source 1 m away where microphones are 0.2 m apart is 57.737 us

The speed of sound is approximately 343 m/s

Wavelength of a 1 kHz signal is 0.343 m

